MANAGEMENT PROGRAMME Term-End Examination

December, 2010

MS-8: QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS

Time: 3 hours

Maximum Marks: 100

(Weightage 70%)

Note:

- (i) Section-A has questions, each carrying 15 marks. Attempt any four questions from this section.
- (ii) Section-B is compulsory and carries 40 marks. Attempt both questions.
- (iii) Statistical tables may be supplied on request.

SECTION-A

- A car is purchased for Rs 5,00,000. If the depreciation for the first three years is at 20% per annum and for the next three years is at 40% per annum, then calculate the depreciated value of the car at the end of five years.
- 2. Units A, B, C of a Factory manufacture 25%, 35%, 40% respectively of the total cars. Out of their output, 5%, 4%, 2% defective cars came from the units A, B, C respectively. Using Baye's theorem or otherwise, find the probability that a randomly selected car found defective has come from the unit B.

15

15

- Explain Binomial and Normal Probability 3. distributions. Mention the conditions under which a random variable having a binomial distribution with parameters n and p can be approximated to a random variable having a normal distribution with parameters μ and σ .
- Compute the Quartile Q_2 , Decile D_4 , Percentile 4. P₆₀ and interpret these values in lines 1-3 for the grouped data showing profits of 100 companies in a year in the table given below:

Profit in Lakh Rupees	Number of Companies f		
20-30	20		
30-40	10		
40-50	15		
50-60	15		
60-70	40		

5. The breaking strength *X* of cables in a Factory has a normal distribution with a mean of $\mu = 1800$ lbs and a standard deviation of $\sigma = 100$ lbs. It is claimed that the breaking strength X can be increased by the introduction of a new technique in the manufacturing process. Should we accept the claim on the basis of a sample of 50 cables manufactured under new technique, at a significance level of $\alpha = .01$ given that the mean breaking strength for the sample is $\bar{X} = 1810$ with

the standard deviation remaining the same. (For convenience, we are giving the result $P(Z \le 2.33) = .99$ where Z has the standard normal distribution N (0, 1).)

- **6.** Write short notes on *any three* of the following topics:
- **15**

P.T.O.

- (a) Methods of collecting primary data
- (b) Range and Mode of data
- (c) Event associated with an experiment
- (d) Polynomial function
- (e) Stratified and Cluster sampling

SECTION - B

7. Using the method of least squares, find the regression equation of x on y for the data given in the Table below:

х	1	2	3	4	5
у	5	7	9	10	11

And from the regression equation obtained, find the value of x corresponding to y = 6.

8. Solve the system of non homogeneous linear 20 equations

$$x+y-z = 9$$

 $8y+6z = -6$
 $-2x + 4y - 6z = 40$

by any one method out of Cramer's rule. Inverse matrix method, Gauss-Jordan method.